

AK-21155 Seat No. _____

B. C. A. (Sem. II) (Non CBCS) Examination

March / April – 2016

CS-09 : Computer Organization & Architecture
(Old Course)

Time : 3 Hours]

[Total Marks : 100

1 Attempt Any Four Out of Five Questions. **20**

- (1) Explain Logic Gate.
- (2) Difference between Combinational and sequential Circuit.
- (3) Explain De-Morgan's Theorems with detail.
- (4) Explain Floating Point Representation.
- (5) Explain Memory Bus and IO BUS.

2 Attempt Any Four Out of Five Questions. **20**

- (1) Explain NAND Gate as Universal Gate.
- (2) Explain S-R Flip-Flop.
- (3) Explain FULL-ADDER in detail.
- (4) Explain Input Output Processor.
- (5) Explain Types of Interrupt.

3 Attempt Any Four Out of Five Questions. **20**

- (1) Explain Control Word with Example.
- (2) Explain Memory Stack.
- (3) Explain Reverse Polish Notation.
- (4) Explain 4*1 Multiplexer.
- (5) Explain Master-Slave Flip-Flop.

4 Attempt Any Four Out of Five Questions. **20**

- (1) Explain 8*3 Encoder.
- (2) Explain Bi-directional Register.
- (3) Explain Error-Detection Code.
- (4) Explain ALU Process with Detail.
- (5) Explain DMA Controller.

5 Attempt Any Four Out of Five Questions. **20**

- (1) Explain 4 bit Registers with Bus Organization.
- (2) Convert into RPN with Stack Operations
 - (1) $(2+(1+2)*3)$
 - (2) $(A*B) + (C \wedge D)$
- (3) Do as direct.
 - (1) $(1101 * 100)$ Perform the Multiplication.
 - (2) $(234)_8$ convert into decimal.
- (4) Simplify the following.
 - (1) $F(X,Y,Z,W) = \Sigma(4,5,6,8,9,10) + d(1,3,7,11,15)$
 - (2) $F(A,B,C) = (0,1,2,3)$
- (5) Simplify the following using of postulates.
 - (1) $(BC' + A'D) (AB' + CD')$
 - (2) $(1 + A'B'C')' = 0$
